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ABSTRACT

Advancements in signal processing may allow for im-
proved imaging and analysis of complex geologic targets
found in seismic reflection data. A recent contribution to sig-
nal processing is the empirical mode decomposition �EMD�
which combines with the Hilbert transform as the Hilbert-
Huang transform �HHT�. The EMD empirically reduces a
time series to several subsignals, each of which is input to the
same time-frequency environment via the Hilbert transform.
The HHT allows for signals describing stochastic or asto-
chastic processes to be analyzed using instantaneous at-
tributes in the time-frequency domain. The HHT is applied
herein to seismic reflection data to: �1� assess the ability of the
EMD and HHT to quantify meaningful geologic information
in the time and time-frequency domains, and �2� use instanta-
neous attributes to develop superior filters for improving the
signal-to-noise ratio. The objective of this work is to deter-
mine whether the HHT allows for empirically-derived char-
acteristics to be used in filter design and application, resulting
in better filter performance and enhanced signal-to-noise ra-
tio. Two data sets are used to show successful application of
the EMD and HHT to seismic reflection data processing.
Nonlinear cable strum is removed from one data set while the
other is used to show how the HHT compares to and outper-
forms Fourier-based processing under certain conditions.

INTRODUCTION

This work is an introduction to the application of the empirical
ode decomposition �EMD� and related Hilbert-Huang transform

HHT� �Huang et al., 1998� to seismic reflection data. The applica-
ion of the EMD and HHT to these types of data has yet to be recog-
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ized as a standard application by the exploration seismology com-
unity. Therefore, it is the purpose of this work to demonstrate the

bility for these new techniques, recently accepted in other disci-
lines, to improve seismic reflection data quality. This work does not
ttempt to replace conventional seismic processing methods, but in-
tead, to complement them with the addition of the EMD and HHT.
n this respect, the EMD is proposed as a highly effective time-do-
ain filter. Additionally, the HHT is compared to the Fourier trans-

orm to the extent that a signal may be characterized with respect to
ime, frequency, or both simultaneously. The only significant differ-
nce is that the HHT can derive instantaneous amplitude, phase, and
requency for a signal with no a priori knowledge; a priori referring
o sample frequency and local disruptions of a time series such as
oise spikes and step functions �Huang et al., 1998�.

mpirical mode decomposition

The EMD is designed to reduce nonstationary, multicomponent
ignals to a series of amplitude- and frequency-modulation �AM-
M� contributions. The EMD, since its formal introduction by
uang et al. �1998�, has yet to be developed into a formal algorithm.
his stems from the empirical nature of the process. However, many
ave written codes to perform the EMD. Among them, and the start-
ng point for this work, are the codes of Rilling et al. �2002�. General-
y speaking, the overall result of the decomposition is to successive-
y remove the highest frequencies from a signal. The net result is to
reate a bank of subsignals, termed intrinsic mode functions �IMF�,
hose sum produces the original signal. The last IMF or residual is
f the lowest order. In this manner, Rilling et al. �2004b� have de-
cribed the EMD to behave as a dyadic filter bank under various con-
itions. This can also be thought of as having several filters of over-
apping frequency content. Therefore, the EMD can be used to gain
ignificant information inherent to the signal. Further, the EMD
iffers from wavelet decomposition in that the filters of the filter
ank do not correspond to sub-band filtering but instead to signal-
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ependent, time-variant filters. Flandrin and Gonçalvès �2004� elab-
rate on the differences and similarities of EMD and wavelet de-
omposition.

The EMD has received much focus in the signal processing com-
unity, but has been given little attention by the exploration seis-
ology community. Magrin-Chagnolleau and Baraniuk �1999�

emonstrated that seismic traces could be analyzed using EMD. Ad-
itionally, similarities in the types of signals being analyzed allowed
or the works of Rilling et al. �2004a, b� to be considered. Together,
hese works analyze the nature and use of the EMD for detrending
nd denoising data — a common necessity in the seismic exploration
ndustry. Therefore, the foundation is set for further investigation of
he potential for EMD and HHT to optimally analyze seismic reflec-
ion data.

ilbert-Huang transform

In seismic signal processing, the Hilbert transform is commonly
sed to generate a complex time series or analytic signal. The benefit
s that instantaneous attributes can be derived from complex traces.
owever, accurate and meaningful computation of these attributes

equires that the input signal’s start and end have zero amplitude, and
t contains no trend that introduces a nonzero mean �Dix, 1949�. In
his regard, perhaps the most significant seismic use for the EMD is
o prepare a signal for input to the Hilbert transform. Together, the
MD and the Hilbert transform are labeled the Hilbert-Huang trans-

orm. Huang et al. �1998� explain how all of the IMFs may be passed
nto a common time-frequency domain where the instantaneous am-
litude and phase can be analyzed with high resolution. The benefit
f preceding the Hilbert transform with the EMD is that signals ex-
ibiting stochastic behavior may also be transformed to yield mean-
ngful physical information in the time-frequency domain. Mean-
ngful physical information refers to instantaneous attributes that are
ree of artificial harmonics and/or irregular phase caused by a non-
ero mean. Furthermore, analyzing instantaneous attributes in the
ime-frequency domain provides the most comprehensive environ-

ent for filter design because both time and frequency domains are
onsidered.

CUSTOMIZATION AND DESIGN

mpirical mode decomposition

The objective of the EMD is to empirically separate a signal into
everal subsignals of varying, and possibly overlapping, frequency
ontent. Each of the subsignals is referred to as an intrinsic mode
unction because it is empirically derived from the data �i.e., there
re no user-specified filters�. The EMD produces a bank of IMFs
hose sum yields the original signal. The first IMFs produced con-

ain the highest frequency components of a signal while the latter
ontain the lowest frequency components. Two questions are pre-
ented and answered to clarify how the EMD works. First, what is an
MF? Second, how is an IMF computed? The answer to the first
uestion is simple. The total number of extrema �peaks and troughs�
n an IMF must not differ from the total number of zero crossings by

ore than one, and the IMF must not contain a nonzero mean �Hua-
g et al., 1998�. The method of producing IMFs, and the answer to
he second question, lies in the concept referred to by Huang et al.
1998� as sifting.
The result of sifting is to remove all trends preventing a subsignal
rom fitting the criteria of an IMF. A signal that already fits the crite-
ia for an IMF will produce no further IMFs during the EMD. Other-
ise, the signal’s extrema are found and separated into peaks and

roughs. A cubic spline is fit to each separately. This envelopes the
ignal within two curve fits, one that rides along the peaks and one
hat rides along the troughs. The average of the two cubic-spline fits
s taken as a function of time, and is referred to as the mean spline,
ecause it visually resembles a low-order, running-average curve fit.
he mean spline is subtracted to produce a new signal. The process is

epeated on each new signal until the criteria for an IMF are met. It is
early impossible to achieve a mean spline that is exactly zero for the
ignal’s duration, so a final stopping criterion must be set to deter-
ine when sifting has effectively produced an IMF. This criterion is
predetermined rms tolerance between two consecutive compo-

ents of sifting. Let s0�t� be sifted once to yield its first component,

1�t�, by removing its average spline, m0�t�. The rms is determined
or each s0�t� and s1�t�, and their difference is compared to the prede-
ermined tolerance. Sifting continues according to equation 1 if the
ifference between rms values is greater than the tolerance.

1

J
��� j=1

J
sn−1�t�2�

1
2 − �� j=1

J
sn�t�2�

1
2�

� tolerance,

sn+1�t� = sn�t� − mn�t� , �1�

here n = 1,2,3,. . . and J is the number of samples in the time se-
ies. The first IMF, having had several lower frequency components
emoved, contains only the highest frequency components of the
ignal that do not cause it to violate the IMF criteria. Subtracting the
rst IMF from the original signal produces a new signal which may
e sifted to form a second IMF. Sifting and production of IMFs con-
inues until the process is manually terminated or the remaining re-
idual contains at most three extrema. Therefore, IMFs can be relat-
d to a signal in accordance with equation 2,

c0�t� = ��n=1

N
cn�t�� + r�t� , �2�

here c0�t� is the original signal, cn�t� are IMFs, r�t� is a residual, if
ny, and N is the total number of IMFs. Figure 1 illustrates the EMD
f a signal composed of three pure tones.

nstantaneous attributes

Let Xn�t� be a bank of IMFs and Yn�t� be a bank of their Hilbert
ransforms. A bank of analytic signals, Zn�t�, can be determined as

Zn�t� = Xn�t� + iYn�t� , �3�

here n denotes the IMF in the bank. The bank of analytic signals af-
ords the ability to determine instantaneous amplitude and phase in
he time domain. Equations 4 and 5 show how this is done:
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EMD/HHT applied to seismic reflection data H31
an�t� = �Xn�t�2 + Yn�t�2, �4�

�n�t� = tan−1�Yn�t�
Xn�t�� . �5�

mplitude, an�t�, and phase, �n�t�, for each IMF
n the bank are found using simple trigonometry.
nstantaneous frequency is determined within the
ntervals between samples and not at individual
amples. This stems from the fact that frequency,

fn�t�, is the first derivative of phase according to
quation 6

fn�t� =
1

2�

d�n

dt
. �6�

nce determined, amplitude, phase, and frequen-
y can be time-sorted and displayed in a time-fre-
uency fashion. This produces a spectrogram at
he highest possible resolution; that is, for every
ample in time there is a corresponding ampli-
ude, phase, and frequency. Additionally, the
emporal summation of amplitude, a�f ,t�, with re-
pect to frequency shown in equation 7 produces
marginal spectrum, hf, in similar manner to that
f a periodogram:

hf = �
0

T

a�f ,t�dt . �7�

he difference is that there is no spectral window-
ng as with the periodogram because of the use of
nstantaneous attributes, and there may exist fre-
uencies having no energy. However, this does
ot happen with broadband signals, and the result
esembles a power spectrum. Figure 2 provides
he time-frequency results of determining the Hil-
ert-Huang transform on the IMFs derived for the
hree-component signal from Figure 1. Valida-
ion of the instantaneous characteristics found in
his manner is determined in much the same way
s with the Fourier transform. Equation 8 em-
loys Euler’s relationship to reconstruct a time
eries from its instantaneous amplitude and
hase. The real part �R� of the summation is
qual to the original time series.

X�t� = R�
n=1

N

anei�nt. �8�

ata analysis

The empirical nature of the EMD causes it to
e sensitive to both analog and digital character-
stics of a signal. An analog example masks a
igh-frequency signal with strong, low-frequen-
y trends. A digital example would be quantizing
r aliasing the data with improper sampling rates.
dequate sampling for the EMD should be much
igher than that determined from conventional
ampling theory. As explained in Appendix A,
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H32 Battista et al.
he discrepancy stems from the invalid assumption that finite-length
ulses, such as seismic pulses, are band limited �Shannon, 1949; Sle-
ian, 1976�.

MD as a time-domain filter

Two data sets are used to analyze the performance of the EMD
nd HHT with respect to seismic reflection data. The first comes
rom a single-channel, shallow source/deep receiver �SSDR� data
et from the Gulf of Mexico. These data carry strong, low-frequency
nergy generated from the strumming of the receiver cable as the re-
eiver was towed through the water column. Cable strum is subject
o nonlinear forcing, and presents a unique opportunity for the EMD
o demonstrate its strength as a time-domain filter. The cable-strum
oise is removed using only the EMD as a time-domain filter by gen-
rating several narrow-band IMFs and summing those that do not
ontain the low-frequency noise. The IMFs containing noise may be
anually removed after visual inspection or handled by way of a us-

r-defined crosscorrelation to the original trace.

HT as a time-frequency filter

The second data set comes from a high-quality, multichannel seis-
ic survey from the Caspian Sea. There is very little noise in these

ata and there exists a strong bottom-simulating reflector from Dia-
onescu et al. �2001�. There is no significant need to use the EMD as
time-domain filter as with the first data set because the signal-to-
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igure 3. Effect of sample interval on the EMD. �a� Hilbert marg
0 Hz tone before performing the EMD. �b� Hilbert marginal spectru
uced by the EMD for a 60 Hz tone with a 1000 �sec sample interv
f a weak, 20 Hz peak results from slight amplitude modulation ca
ensitivity to fidelity. �c� Hilbert marginal spectrum for all IMFs pro
or a 60 Hz tone with a 333 �sec sample interval.
oise ratio is already very high. The EMD is applied to these data
nly as a prerequisite to the HHT. The HHT is first used to compare
ltering in the time-frequency domain versus that of the frequency
omain using the traditional Fourier transform. Secondly, the in-
tantaneous attributes derived from the HHT are compared to those
roduced by the Hilbert transform without the use of the EMD.
hese exercises demonstrate both the strength of time-frequency do-
ain filtering and the necessity of using the EMD with the Hilbert

ransform.

OPTIMIZATION AND FILTER COMPARISON

arameter optimization for the EMD

The EMD is very sensitive to both the physical and digital charac-
eristics of the signal being analyzed. The sensitivity is high enough
o pick up quantization and fidelity errors. Quantization errors result
rom rounding errors introduced when a continuous function is sam-
led at discrete locations �Oppenheim and Schafer, 1989�. Loss of fi-
elity allows for amplitude modulations even when sampling faster
han the conventional Nyquist frequency. Most signal processing
echniques for seismic data are not significantly affected by this.

Figure 3 shows that the IMFs from a pure 60 Hz tone sampled ev-
ry 1000 �sec �1 kHz� introduce a 20 Hz tone. The same signal
ampled every 333 �sec ��3 kHz� does not produce the 20 Hz tone
fter EMD because the fidelity error has been significantly reduced.
urthermore, low-energy dots in Figure 3 result from edge effects in

the Hilbert transform. These edge effects are un-
avoidable in the case of a pure cosine function be-
cause it is impossible for it to meet Dix’s �1949�
criteria of zero-amplitude beginning and end with
zero mean throughout. However, following Sle-
pian �1976�, these points can be ignored because
they fall below the level of significant energy.
Moreover, loss of fidelity is inevitable for any
seismic pulse, and the choice of sample rate
should be the highest possible if the assumption is
held that seismic pulses possess infinite band-
width, Appendix A defends this assumption. This
lends support to McGee �2000�, who suggested
seismic signals should be sampled as fast as pos-
sible to respect the Heisenberg Uncertainty Prin-
ciple, stating that time-limited signals have infi-
nite bandwidth and band-limited signals have no
beginning or end.

The EMD sometimes exhibits difficulty sepa-
rating weak trends from strong trends. This most-
ly occurs when a signal contains strong, low-fre-
quency components with weak, high-frequency
components riding along. The sifting process of
the EMD may miss detect the weak components
when determining the signal’s envelope and
mean. To summarize sifting, a signal’s extrema
are located and separated into upper �peaks� and
lower �troughs�. A cubic spline is drawn through
each and they are averaged to form the mean
spline. The mean spline can significantly stray
from the signal in cases dealing with strong
trends. For example, parts of the mean spline
could lie outside of the signal’s amplitude enve-
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EMD/HHT applied to seismic reflection data H33
ope. Artificial trends are produced during sifting when the poorly
etermined mean splines are subtracted from the data. Figure 4
hows both the nature of this problem as well as a working solution.
he problem is that strong, short-lived trends prohibit the detection
f extrema because the weaker signal riding on the trend cannot ex-
ress a change of slope �i.e., peaks and troughs are lost in the trend�.
he “missing” extrema can be located by analyzing the distribution
f extrema for the whole signal. Extrema spacing is a measure of the
ominant frequencies in the signal, and a large gap in extrema sug-
ests the presence of a strong trend. Thus, a strong, local trend is de-
ned as a portion of the signal where the extrema spacing is greater

han two standard deviations from the mean extrema spacing. These
ortions of signal are fitted with a third-order polynomial that is sub-
racted before determining extrema. The result, as shown in Figure
, is to constrain the mean spline such that it cannot separate from the
ignal. Further, the introduction of false trends is significantly mini-
ized by using well-constrained mean splines. An additional benefit

f this is to produce more IMFs of narrower bandwidth than before.
esults of using the EMD with and without this optimization are

hown in the following section. Furthermore, this modification can
e considered permanent, and does not need to be adjusted for other
ata sets. It is presented here to demonstrate how the EMD is adapted
or use with seismic signals.

able strum removal using the EMD

The EMD is applied to a single-channel seismic reflection profile
aken in the Gulf of Mexico using a shallow source with a deep-
owed receiver. There is a significant amount of noise contributed to
he receiver because of cable strum as shown in Figure 5. The energy
f the cable strum far exceeds that of the seismic reflections from the
eafloor and below. However, performing the EMD, even under
oor conditions, helps to bring out the desired data. Figure 6 shows
he same traces after performing EMD and filtering without any pa-
ameter optimization as described above. Most of
he cable strum has been removed but there is ob-
ious evidence for the introduction of artificial
rends; these being the high amplitude noise in
igure 6. Parameter optimization of the EMD re-
uces the introduction of artificial trends almost
ompletely and produces IMFs of narrow band-
idth. Therefore, it is much easier to separate the

able strum in the time domain by summing IMFs
ithout cable strum. In this manner, the EMD is
sed as a signal-dependent, time-variant filter.
igure 7, having had EMD parameterization to
educe artificial trends, presents the ideal results.

ost of the traces contain the same number of
MFs but some contain less. The ability to decide
hich IMFs are most representative is subject to

nterpretation, but can be guided. It was decided
hat any IMFs containing cable strum and not
ontaining energy for the seafloor reflection
ould be removed based on the idea that the seaf-
oor horizon should reflect the most energy and
ttenuate the least. This criterion proves highly
ffective, as seen in Figure 7. The data in the up-
er panel is not present in the filtered noise in the
ower panel.
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ime-frequency versus frequency-domain filtering

The HHT is used to derive instantaneous phase and amplitude for
signal. Instantaneous frequency can be derived from phase as de-

cribed previously in equation 6. In this manner, a time-frequency
epresentation is achieved wherein every sample is accounted for.
he Hilbert transform can be approximated via forward and inverse
iscrete Fourier transform only if the signal satisfies the amplitude
nd mean criteria described by Dix �1949�, which are optimally
chieved using the EMD. Additionally, the HHT and Fourier trans-
orm can apply the same transfer function to the data with nearly
dentical results. Figure 8 illustrates the results of applying the same
requency response, a sixth-order Butterworth bandpass filter with a
assband of 100–300 Hz, to the same data set. Figure 8a shows the
ltered data, while Figure 8b shows the traditional method using
FT. Clearly, the two methods of filtering are related as the results
re nearly the same. However, upon closer look, there are differenc-
s. These differences can be caused by two major factors. First, the
HT may produce invalid attributes, if any of the employed IMFs

arry a trend which they should not if the EMD is properly per-
ormed; meaning it was prevented from sifting completely. Second,
zero-phase filter is achieved via Fourier transform by filtering both

he forward and reverse directions, which effectively applies the fil-
er twice. Therefore, the HHT bandpass filter maintains a higher
pectral resolution. Even so, the two forms of filtering converge on
he same result when optimum detrending has occurred prior to fil-
ering. Further, neither application outperforms the time-domain im-
lementation of the EMD as seen in Figure 7. Filter comparison is
lso performed on high-quality data to show how robust the HHT re-
lly is. We noted above that applying a bandpass filter using FFT and
HT produced nearly the same result. Figure 9 reemphasizes this
oint by applying a bandpass filter with a passband of 15–60 Hz to
ata from the Caspian Sea containing a buried gas hydrate �Diaco-
escu et al., 2001�. Notice there are many similarities between the
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c� Residual between �a� and �b� above. Notice how both techniques
ffectively remove cable strum and portions of signal.
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wo techniques. However, as stated before, the HHT posseses higher
esolution and respects the phase of the original signal better than the
FT-based filter.

HT versus Hilbert transform

The HHT differs not only from Fourier-based techniques but also
rom a standard Hilbert transform. As a reminder, the only algorith-
ic difference between the HHT and the Hilbert transform is the use

f the EMD to prepare the signal. Figure 10 illustrates the applica-
ion of EMD to a CDP gather, post normal-moveout removal, from
he Caspian Sea data set. Figure 10a shows the individual IMFs,
here Figure 10b shows the cumulative sum of the IMFs for each
DP. The HHT is applied to the gather by applying the Hilbert trans-

orm to the IMFs and not the original CDP traces. The strength of the
HT becomes quite apparent when comparing the attributes derived

rom the HHT versus the Hilbert transform. Figure 11 presents a
ime-frequency spectrogram, �Figure 11b�, and Hilbert marginal
pectrum, �Figure 11c�, for the CDP trace �Figure 11a�. It appears as
hough the signal is composed of broadband energy as the instanta-
eous frequencies are widely distributed. In contrast, Figure 12 sug-
ests the signal is primarily composed of stable, low-frequency
omponents easily seen as trends. The broadband energy compo-
ents are still present. The differences occur because the CDP trace
arries localized DC shifts while its IMFs do not, and the Hilbert
ransform breaks down in the presence of a nonzero mean. Both sets
f attributes, from HHT and Hilbert transform, reproduce the origi-
al trace after the inverse transform is applied, although the HHT
epresentation provides optimum results in the time-frequency
omain.

DISCUSSION

The objectives of this work are determine the
bility of the EMD and HHT in order to quantify
eaningful geologic information in the time and

ime-frequency domains and to develop en-
anced filters in the time-frequency domain using
nstantaneous attributes to improve signal-to-
oise ratio. The results presented herein suggest
hat both of these objectives are met. The integrity
f the EMD is crucial to the ability of the HHT to
utperform traditional Fourier-based techniques.
herefore, parameterization of the EMD to a giv-
n type of data proves to be the highest priority for
he application of HHT to seismic reflection data
rocessing. EMD parameterization allows for
oth the production of narrow-band IMFs as well
s the most detailed calculation of instantaneous
hase, amplitude, and frequency. Additionally,
esigning filters around these attributes produces
esults nearly identical to those produced by stan-
ard Fourier-based filters. However, the toler-
nce for poorly behaved signals, such as those of
he cable-strum example, is more readily accept-
d by the HHT than with Fourier-based tech-
iques.

Several characteristics of the HHT set it apart
rom other filtering methods, in addition to the ac-
eptance of signals exhibiting stochastic behav-
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Figure 11. Hi
time series an
spectrum crea
or. The HHT requires no knowledge of the signal’s sample rate or
requency content because the EMD empirically reduces data to in-
rinsic modes. In addition to this, the HHT is effectively a time-do-

ain operation, and can perform zero-phase filtering with a single
peration unlike its Fourier counterpart. Furthermore, HHT-based
ltering retains greater spectral content than Fourier-based filtering.
ero-phase Fourier-based filters are typically achieved in two steps,
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orward and reverse filtering, and inherently remove more informa-
ion than may be desired; resulting in amplitude decay and occasion-
l phase changes as shown in Figure 9.

The use of EMD and HHT is a time-consuming process that may
ot be necessary for all data processing. This is the reason it is not
resented in this work as a substitute for existing methods. Large tar-
ets, such as those typically addressed by the oil industry, may not
equire such advanced processing techniques. However, smaller tar-
ets, such as those in environmental geophysics, commonly demand
uch accuracy as the HHT can provide. The strength of the HHT for
ndustry data lies in its ability to preserve phase and amplitude while
mpirically separating signal from noise. Geologic targets such as
as hydrates can be handled in the time-frequency domain by HHT
ith optimum results, meaning there is little noise introduced during
rocessing. Additional success has been achieved removing ground
oll from land seismics, as well as dewowing ground-penetrating
adar data because both types of noise are very similar to the cable-
trum example in this work. Future goals for this work involve
ntegrating the HHT with amplitude-versus-offset processing of gas
ydrates.

CONCLUSIONS

The EMD and HHT are significantly improved when data acquisi-
ion employs sample frequencies much higher than conventional
yquist sampling; ten times faster than Nyquist seems to be a work-

ng minimum. This is referred to as oversampling, see Appendix A.
he pros outweigh the cons in this situation. The cons are basically
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igure 12. Hilbert transform of a stacked CDP gather prepared using
tacked CDP gather�. �a� The time series analyzed. �b� Signal power
uency. �c� Hilbert marginal spectrum created as a temporal sum in
ude for given frequencies. Notice how much information is now pre
o Figure 11.
longer acquisition times and data storage prob-
lems. The pros are signals that represent geologic
targets with very high resolution in both time and
frequency. Additionally, the EMD, because of its
iterative spline fitting, depends more on a signal’s
fidelity than on its frequency for analysis. There-
fore, the HHT is also dependent on the signal’s fi-
delity. In this manner, the accuracy of HHT filter-
ing and the ability of it to optimally produce re-
sults is directly related to sample rate. It is intui-
tive that instantaneous attributes are only as
instantaneous as the sample interval they are de-
rived from. Therefore, high sample rates coupled
with EMD and HHT allow for a wide range of
tools to be developed.
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APPENDIX A

SAMPLING THEORY FOR SEISMIC PULSES

Conventional sampling theory is based on a theorem of Shannon
1949� when he was working with the digitization of television sig-
als. The sampling theorem relies on an assumption that the signal is
imited in both time and frequency, “although it is not possible to ful-
ll both of these conditions exactly” �Shannon, 1949�. The theorem
tates that a continuous-time signal can be digitized without loss of
nformation by sampling it at a rate equal to one-half the highest fre-
uency in its power spectrum. Shannon calls this the Nyquist fre-
uency.

Of course, in the real world, all continuously recorded signals are
f finite length. Slepian �1976� calls these real signals and discusses
he problem of applying Shannon’s sampling theorem to them. He
hows that finite-length signals cannot be band-limited and, recipro-
ally, band-limited signals must be of infinite length with no begin-
ing or end. The fact that Shannon was aware of this is indicated by
is inclusion of the statement quoted above, that he felt no compul-
ion to discuss it further implies that it was of no great concern to his
ork. Though it does involve the time/bandwidth product, WT by
oth Shannon �1949� and Slepian �1976�, which is well known to be
ubject to the Heisenberg Uncertainty Principle. In theory, the un-
ertainty associated with WT presents a serious dilemma when digi-
izing signals. Slepian �1976� suggests getting around it in practice
y defining an insignificant level of power which would determine
n effective bandwidth as signal power falls below it.

0 0.2
Amp

0.4

c)

i.e., HHT of a
d in time-fre-
neous ampli-
�b� compared
40

3

EMD �
plotte
stanta

sent in



m
t
t
q
t
t
o
t

a
t
f
r
a
r
r
m
f
e
s
T
l
t
a
q

t
s

D

D

F

H

M

M

O

R

—

—

S

—

S

EMD/HHT applied to seismic reflection data H37
Television signals consist of a high-frequency carrier that is
odulated by subsignals which carry the information to be transmit-

ed. The carrier-frequency portion of the signal is extremely long in
ime �an hour-long program is given as an example� and high in fre-
uency relative to the subsignals. The application of the sampling
heorem to such a signal would determine that a sampling rate equal
o one-half the carrier frequency is sufficient. Given the great length
f the carrier signal, this would be exact enough for the assumption
o be approximately valid.

Seismic signals are causal and have finite energy; therefore, they
re limited in time. However, they are not band-limited. This implies
hat they cannot be digitized at a finite rate without some loss of in-
ormation. These losses take the form of quantization �round-off� er-
ors caused by the finite dynamic range of the A–D converter and the
liasing of energy at frequencies too high for the chosen sampling
ate to represent with good fidelity. Antialias filters are necessary but
esult in loss of information/resolution. A signal’s capacity to trans-
it information is measured by its entropy, which is determined

rom its power spectrum �Shannon, 1948�. Smoother power spectra
xhibit greater entropy. The use of steep antialias filters disrupts the
moothness and lowers the entropy, thereby losing information.
his can be avoided by sampling so fast that the Nyquist frequency is

ocated far beyond any frequencies that contribute significantly to
he signal’s entropy. This allows the use of gentle antialias filters that
re capable of reducing signal power enough to ensure that the Ny-
uist frequency represents an appropriate effective bandwidth. The
echnique has been dubbed oversampling and has found wide use in
eismic and other applications requiring great resolution.
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